
Adventures in Recreational Mathematics:

Patterns of Patterns

Some definitions are better than others. Suppose I draw a list of operations f1, f2, . . . , fn
out of a hat and assign relations to them at random, like

f3(f5(x, y), z, f2(w)) = f2(f2(x)),

f4(f2(x)) = f1,

f3(x, x, y) = f3(y, x, x),

(1)

then I will have defined an algebraic object – call it a glarbl. However, glarbls will not be

very nice objects: studying glarbls will not help you prove the Riemann hypothesis, calculate

cohomologies, cook your breakfast, or anything else useful.

What is it that distinguishes the glarbl and its many cousins from normal, sane definitions

like rings, groups, and tensor products? The answer to this question is obviously subjective,

but . . .

1 Compatibility

Nice things are nice to other nice things. Consider, for example, the definition of a derivation.

Given a ring R and an R-module M , a derivation with coefficients in M is a map D : R → M

satisfying

D(0) = 0,

D(1) = 0,

D(x+ y) = D(x) +D(y),

D(−x) = −D(x),

D(xy) = yD(x) + xD(y).

(2)

Some rules can be dropped, but written in this way, the definition of a derivation has exactly

one rule per each of the five ring operations 0, 1,+,−, and ·.

Each rule takes D acting on the output of some n-ary ring operation f acting on

free variables x1, . . . , xn and equates it with an expression in terms of those variables and

D(x1), . . . , D(xn). Thus, the combined effect of these five rules which define a derivation is

to give a canonical way to reduce D acting on any expression in terms of a set of variables

x1, . . . , xn to an expression in terms of x1, . . . , xn, D(x1), . . . D(xn).
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Moreover, the reduction of expression is compatible with each of the ring axioms in such

a way that equivalent expressions in the input of D get reduced to equivalent expressions in

the output. For the associative law (xy)z = x(yz), for example, we get

z(yD(x) + xD(y)) + xyD(z) = yzD(x) + x(zD(y) + yD(z)) (3)

which holds true whether D is a derivation or not.

Expressions in x1, . . . , xn modulo the equivalences given by the ring axioms are just ele-

ments of the free ring Z[x1, . . . , xn], meaning our definition of a derivation can be repackaged

in the form of a map ϕ from the free ring Z[x1, . . . , xn] to the free module generated by

D(x1), . . . , D(xn).

Just about any definition that you might encounter in the wild satisfies this sort of

compatability. One of the more common constructions is the tensor product of k-vector

spaces: the tensor product is specified by the definition of a bilinear map and the definition

of a bilinear map reduces to the map of free vector spaces

k[x1, . . . , xn]× k[y1, . . . , ym] → k[x1 ⊗ y1, . . . , xn ⊗ ym] (4)

given by applying the distributive law.

To formalize this notion of a definition compatible with existing operations, let us consider

monads. For any purely algebraic object1 there is the set of elements F (S) of the free object

generated by a set S, giving a functor F : Set → Set. Each generator is also an expression,

giving a natural transformation ηS : S → F (S). An expression in terms of other expression

is also an expression itself, giving the ‘multiplication’ map µS : F (F (S)) → F (S). The triple

(F, η, µ) forms the structure of a monad. The actual objects equipped with the structure

specified by F are the F -algebras. If you would like to further demand that all operations

have only a finite number of arguments, this amounts to demanding that F commutes with

filtered colimits.

More generally, for the allowance of structures that span multiple objects, you can con-

sider monads over Set×n as well.

Definition 1.1. Given a monad F on a category C, let a compatible system over F be a

monad G equipped with a natural transformation ϕ : G ◦F → F ◦G such that it satisfies the

obvious2 compatibility condition with the monad structures on F and G.

The compatibility conditions are such that F ◦ G naturally possess the structure of a

monad. Let us call this monad the extension of F by G using ϕ.

1i.e. not counting fields
2That is, the conditions are not obvious but they’re the only reasonable ones.

2



Example 1.2. The ring monad is the extension of the Abelian group monad by the commu-

tative monoid monad via the map which sends products of linear combinations of variables

to their expansion into individual terms.

Example 1.3 (Bilinear Maps). Let F : Set×3 → Set×3 be the functor

(S, T, U) 7→ (R⊕S, R⊕T , R⊕U), (5)

where R⊕− is the free R-module functor. F is naturally equipped with a monadic structure.

Then, we need to add a new operation with signature ϕ : M × N → L. If you have

variables ms ∈ M for s ∈ S, nt ∈ N for t ∈ T , and lu ∈ L for u ∈ U , you can check that the

only expressions that can be made with those symbols and the operation ϕ are the symbols

themselves and expressions of the form ϕ(ms, nt). (Note that module operations like + and

· are not allowed here.)

Thus, let G : Set×3 → Set×3 be the functor sending

(S, T, U) 7→ (S, T, U ⊔ S × T ). (6)

Equip G with the unique reasonable monad structure 3.

Then, the definition of a bilinear map arises from the compatible system of G and the

natural transformation

f(S,T,U) : (R
⊕S, R⊕T , R⊕U ⊔R⊕S ×R⊕T ) → (R⊕S, R⊕T , R⊕T⊔S×T ) (7)

which sends

ϕ(r1m1 + · · ·+ rsms, r
′
1n1 + · · ·+ r′tnt) 7→ r1r

′
1ϕ(m1, n1) + · · · rsr′tϕ(ms, nt) (8)

by applying the distributive law to expand out the expression. Compatibility of f with the

monadic structures on F and G arises from the fact that distributing out puts any such

expression into a unique normal form.

Note that the above is for a fixed R. One re-run the above game with a generic ring where

the monad F sends (G,S, T, U) to (Z[G],Z[G]⊕S,Z[G]⊕T ,Z[G]⊕U).

Proposition 1.4. Ring structures over an abelian group, tensor products over a ring R,

linear maps, homomorphisms of algebraic objects, derivations, p-derivations, etc. all arise

from compatible systems.

3These maps can be constructed explicitly by using the fact that the notation used is already correct.

The unit sends nu to itself. G(G(A)) consists of expressions made out of formal variables indexed by other

expressions - denote the formal variable by expressions enclosed in brackets like [ϕ(ms, nt)]. Then the

multiplication map consists of dropping the brackets, sending ϕ([ms], [nt]) and [ϕ(ms, nt)] to ϕ(ms, nt). This

sort of principle provides monadic structure to any functor sending a set of variables to the set of formal

expressions in those variables.
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A classification of compatible extensions of common algebraic objects is probably inter-

esting but too much work for me to do here.

2 Exactitude

Nice things generalize nicely to ∞-land. Monoids beget monoid objects, groups beget group

objects, rings beget ring spaces, etc. Let us consider monads F : Spc → Spc. When are

these nice?

One condition we could demand is that F is ‘finitary’ in the sense that it commutes with

filtered colimits. This effectively rules out operations with an infinite number of arguments.

But what about F acting on the circle space S1? This is an operation that acts on paths: it

has a signature

ϕ(x : A, h : x ∼ x) : A. (9)

There are interesting and natural monads which have operations with non-trivial path

arguments4 but let us instead consider what it would mean for there to be no such path

operations.

Compatibility with filtered limits detect various finiteness conditions. The corresponding

type of limit here is the hypercover.

Definition 2.1. In the ∞-category Spc of homotopical spaces, let a hypercovering B of a

space A be a simplicial object in Spc mapping into A

· · ·B1 ⇒ B0 → A (10)

such that the morphism

B[∆n] → B[∂∆n]×Hom(∂∆n,A) A (11)

is essentially surjective for all n.

The first two of these covering conditions are that B0 → A is essentially surjective and

that B1 → B0 ×A B0 is essentially surjective.

The characteristic feature of the category of homotopical spaces is that all hypercoverings

are also colimit diagrams. (In fact, I’m pretty sure that all diagrams of that shape are colimits

if and only if they are hypercoverings.) We can now make a new definition in analogy to

that of a finitary monad.

4Examples are En algebras and the n-truncation functor interpreted as a monad.
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Definition 2.2. An exacting monad is a monad on Spc (or more generally Spc×n) which

preserves hypercoverings.

All homotopical spaces (and morphisms between them) can be covered by a diagram

of sets5. Therefore, it should be the case that exacting monads are determined by their

operation on the full subcategory of sets.

Conjecture 2.3. A Set-monad can be lifted to an exacting Spc-monad if it preserves hy-

percovering diagrams in Set.

Theorem 2.4. The monad of associative algebras is exacting.

Proof. Given a set S, the free monoid F (S) over S has an underlying set

∞∐
n=0

S×n. (12)

Then, on the n-th component, the hypercovering condition reduces to

B[∆k]×n → B[∂∆k]×n ×Hom(∂∆n,A)×n A×n =
(
B[∂∆k]×Hom(∂∆n,A) A

)×n
(13)

which is satisfied because the product of surjective morphisms is surjective.

Conjecture 2.5. The monads of Rings, Abelian groups, commutative monoids, modules,

groups, etc. are all exacting. The glarbl monad is not exacting.

The first nontrivial case is showing that the map F (B ×A B) → F (B) ×F (A) F (B) is

surjective. In general, if two expressions in F (B) map to the same expression in F (A),

they are related by a chain of multiple steps of substituting elements of B with equivalent

elements and then rewriting the expression. We are now requiring that the expressions in

F (B) can be re-written in such a way that a single substitution of the variables relates the

two expressions together.

Here is how this works in the case of abelian groups. Consider the free Z-modules

generated by B = {b1, b2, b3, b4} and A = a1, a2 and let f : B → A be the function sending

b1 and b2 to a1 and sending b3 and b4 to a2. In this case, the expressions b1 − b2 + b3 and b4
both get sent to the same element of Z⊕A. A lift to Z⊕B×AB would be

[b1, b1]− [b2, b1] + [b3, b4]. (14)

In genera, there seems to be enough room to add canceling terms in the nice monads so that

the exacting requirements can be satisfied.

It would probably also be interesting to classify the low-complexity exacting monads.

Have all of them already been discovered or can you find something new?
5See Kan complexes.

5


