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A Historical Note:

This paper was written on a lark based on a calculation that, while potentially

interesting, looks to have no application whatsoever. It was suggested to me that I

write the results up. It was not specified, however, that the paper was not to be stuffed

full of as many bad jokes as I could come up with. As a result there is a formula or

two for the entropy, a discussion of the optimal way to measure entropies with a fixed

number of copies of a state, an analysis of asymptotics, and a developing feud with the

replica trick. There is also flying papers, footnotes, rhyming, tabloids, cheesemaking,

a sufficiently large N, and additionally a developing feud with the replica trick. The

following is most likely not useful. But, perhaps, they may be entertaining.



I have endeavored to write this ‘paper’ in as ludicrous manner as possible so that

what it lacks in scientific merit, it may lack in comedic merit as well. The following

may well be confusing. If you are not confused, please let me know; do teach me what

is going on.

1 Replica Blues

The start of this dreadful affair comes from two sources. The first is the question of

how to actually, you know, measure the von Neumann entropy. The second is that

lovely little piece of black magic known as the replica trick.

Both of these revolve around a single quantity, the von Neumann entropy, which

equals

S = −Tr (ρ log ρ). (1.1)

A simple enough expression, but it seems to like to play hard to get when it actually

needs to be calculated. This can be resolved by using the old physicist’s trick of

calculating something easier and hoping the problem goes away. The something easier

in this case is the Renyi entropy,

Sα =
1

1− α
log Tr (ρα). (1.2)

When α is an integer, this often is not so bad and can often be solved by clever staring

at path integrals.

The replica trick is based on the following principle: knowing the Renyi entropy to

a high degree of accuracy for integer n > 1 will tell you the von Neumann entropy, the

limit of the Renyi entropy as n approaches 1, to a high degree of accuracy. This may

not seem obvious at first glance, but as a matter of fact it is entirely false1.

Consider the following situation. You flip a weighted coin. Most of the time, with

probability 1 − κ, the coin lands heads and nothing happens. If the coin lands tails,

Daniel Harlow throws a printout of his latest paper at you2. What’s the entropy? This

comes out to

S = −(1− κ) ln(1− κ)−
∑
i

κpi ln(κpi) = −κ ln(κ)− (1− κ) ln(1− κ) + κSH , (1.3)

where the sum is over the microstates of the paper, and SH is the entropy of the text

radiated by Harlow3.

1For those who may have noticed the ‘high degree of accuracy’, even with perfect accuracy Carlson’s

theorem won’t save you. In an infinite dimensional Hilbert space, the Renyi entropy is never an entire

function as it is not defined for Re(n) < 0. It can easily become non-analytic the moment n hits 1 as well.
2This is liable to cause significant blunt force trauma, leading to an undesired increase in entropy.

Attempt only with professional supervision
3Most of this radiation comes out in discrete quanta known as ‘letters’, while smaller amounts of the
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As for the Renyi entropies, one has

e−(n−1)Sn = (1− κ)n +
∑
i

κnpni = 1 +O(nκ) +O(κne−nSH ). (1.4)

Therefore, the entropy is zero at leading order and the dependence on SH is exponen-

tially suppressed. The von Neumann entropy would beg to differ.

One4 may want to find an estimate for the von Neumann entropy using the Renyis

that doesn’t involve such Mafia dealings. There is such a formula. It is entirely useless.

log(ρ) can be Taylor expanded around ρ = 1 and all eigenvalues of ρ are in the radius

of convergence. Plugging this into the formula for the von Neumann entropy gives

S = −Tr (ρ log(ρ)) =

∞∑
k=1

1

k
Tr (ρ(1− ρ)k). (1.5)

Tr (ρ(1 − ρ)k) is positive and monotonically decreasing in k. Effectively, it computes

the amount of probability under progressively tightening cutoffs. The N ’th partial sum

can be expressed as the expectation value of an operator on N copies of the state ρ.

For N sufficiently large5, this gives an arbitrarily good approximation to the entropy.

Therefore, the partial sums of the series monotonically increase, converging on the

correct entropy. Hooray! We have our formula and we can now merrily go off to do

our calculations6.

How many terms do we need? The k’th term is less than 1/k, so this gives at least

exp(S) terms in order to get close to the right answer. Wups.

Well that’s not necessarily too bad as some of the corrections are nonpeturbative

anyways. Each of the 1 − ρ terms expands in binomial coefficients. None of these

cancel. The order? Exponential in N , the number of terms. Doubly exponential in S,

that is. No dice7.

This approach might actually be salvageable. However, it will turn out to crucially

depend on solving the worst possible limit of the replica trick and on understanding

the results of a mathematics paper that I have, as of yet, been completely unable to

comprehend.

radiation is in the form of more exotic states. For an overview of such phenomena, see Physical Review

Letters vol. 1-26.
4Who is this ‘one’ person anyways?
5For an N sufficiently large for most purposes, see Appendix A.
6This version of the entropy estimate is actually slightly different from the version derived and analyzed

later.
7We’ll be needing them later.
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2 The Hunting of the SN invars

Now who came up with this ‘von Neumann entropy’ anyways8? How do you figure

what the damn thing is for anything? Since rhetorical questions are meant to be

answered, here is a canonical procedure for measuring the entropy, at least classically.

The quantum version will be coming soon.

Suppose you want to measure the entropy of a loaded die. There’s only one way to

go about it: Take a bucket full of identical copies of them9 and then pour the bucket on

the floor10. Count the number of times each face lands face up, calculate the Shannon

entropy, and there is your estimate. Note how the number of dice needed is exponential

in the entropy. There is no better that you can do: for N ≪ exp(S/2) and probability

not too unevenly distributed, each outcome will typically be different. When faced

with N distinct outcomes there’s nothing much better to do than just guess log(N),

which will be quite a ways off in general.

And now, quantum mechanics. The expectation of an operator can be measured to

any degree of accuracy through repetition. That’s the whole point of that expectation

value thing. Therefore, measurement actually lives in the space of operators on the

tensor product of N copies of the state. Note how each measurement kills the quantum

(and classical) superposition of the state, so a new copy must be sacrificed for the next

measurement11.

For entropies, the optimal operators turn out be highly constrained: they are

sums of projectors onto irreducible representations of the symmetric group. There

is a SU(N) symmetry on the Hilbert space along with a SN permutation group so in

order to measure the N ’th Renyi entropy SN on the N copies-

Hold it.

There are simply too many N’s. Some symbol reshuffling is in order to resolve the

problem before things get worse.

This, of course, can only be accomplished in verse.

• n: The number of tensored copies of the state upon which you run your experi-

ments.

• N : The dimension of the Hilbert space containing the state and its variants.

• M : An arbitrarily large number from later whose meaning will be seen.

• N: An English letter. (See P.R.L. vol. 14.)

• k: The order of the Renyi Entropy which was an n before.

8Claude Shannon, in fact, since the next bit is going to be some classical information theory.
9Useful if you want to get beaten up in a dark alley by some nice men from the Casino.

10You can also roll one die many times, but where is the fun in that?
11Campaigns for the humane treatment of quantum states have thusfar not been successful.
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• Hk: The Renyi entropy of order k: A family including the von Neumann and

more.

• Sn: The symmetric group on n elements whose action preserves the state.

• N: The natural numbers, such as ninety-eight.

• U(N): The unitary group on the Hilbert space which keeps Hk the same.

• H: The von Neumann entropy whose value is our aim.

Got it?

So what operators should you consider? There are a whole lot of them, after all.

Symmetry is a big help. There is a U(N) symmetry acting upon the Hilbert space and

there is a Sn permutation group shuffling the states around. Transforming an density

matrix under U(N) doesn’t change the entropy and gives another density matrix just

as good as any other. Therefore, conjugating any operator giving an estimate of the

entropy gives another that gives an estimate that is just as good. Similarly, conjugating

an operator by a permutation doesn’t change anything of note at all. So, there’s

nothing stopping you from using the average of all of these variants of the operator

instead. Indeed, this can only decrease the uncertainty of the operator12. Nothing is

lost by focusing on the invariant operators. But these are just sums over projectors

into irreducible representations of the combined symmetry group.

Things simplify a bit more: the tensor product of n copies of C⊗n breaks up into

C⊗n =
⊕
λ⊢n

Sλ ⊗ Vλ. (2.1)

This is a direct sum over λ, the partitions of n. These partitions label both the

irreducible representations of Sn, Sλ and the irreducible representations of U(N), Vλ
13.

Since each representation of the symmetric group appears exactly once, all symmetric

operators are linear combinations of symmetric group projections. This turns out to be

equivalent to symmetric linear combinations of the permutations. More on that later.

Therefore the entropy must be obtained by studying how the tensor products of the

density matrix distributes itself in the various representations of the symmetric group.

This seems easy enough. Ah, a light at the end of the tunnel. Unfortunately, this

light is an oncoming train.

But first, a tour of the representation theory of the symmetric group.

12The argument comes down to the trace of a symmetric operator times an operator with no symmetric

component being zero.
13When N > n, there are some partitions that do not give a representation of U(N). This little fact is

going to be swept under the rug to cause problems for the next residents of the property.
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3 The Representation Theory of The Symmet-

ric Group.

The following has been copied dutifully from my notes, which have been copied from

Andrew Kobin’s notes on representation theory. Perhaps, for a coherent and under-

standable account, you may want to look there.

Representations of finite groups are not too unlike representations of compact Lie

groups. They are unitary and break up into a finite number of irreducible represen-

tations. One such representation is the regular representation: it consists of linear

combinations of elements of the group. This is actually a representation of the prod-

uct of two copies of the group: one acts on the left and one on the right. Given a

representation V of the group, tensoring it with its dual V ∗, that is, considering the

linear maps from V to itself, gives another representation of the product of the groups.

Each group element is associated with just such a map from V to itself so there is a

canonical mapping from the regular representation C[G] to V ⊗ V ∗. A bit of careful

logic ends up demonstrating that this actually decomposes the regular representation

into a direct sum of squares of each of the irreducible representations.

C[G] =
⊕
µ

Vµ ⊗ V ∗
µ (3.1)

Given an irreducible representation λ and a conjugacy class of the group G, one can

compute the trace Tr λ(g) for any representative g of the conjugacy class. This is called

the character χλ(g). The study of these characters is called character theory14. The

product of traces is the trace on the tensor product. Let |CG(g)| be the the number of

elements of G commuting with g. There are |CG(g)| different h’s for which ghg′−1 to

equals h if g and g′ are in the same conjugacy class and no way for this to happen if

they are not. Thus, some intense staring15 will show that∑
λ

χλ(g)χλ(g′) = Tr C[G](g ⊗ g′) = |CG(g)|1(g ∼ g′). (3.2)

Some similar fiddling around shows such an orthogonality relation when summing over

g and so the characters χλ(g) can be rescaled to form a unitary matrix. This implies

that the number of irreducible representations equals the number of conjugacy classes

of the group and that the numbers of each irreducible representation in a representation

is fixed entirely by the trace of each of the conjugacy classes.

On to the symmetric groups. The number of conjugacy classes isn’t too hard: they

are classified by the partition of elements into cycles in the cycle decomposition. Since

14No relation to TvTropes or the Unicode consortium.
15This, along with similar phrases such as ‘this is obvious’, ‘it is easy to see’, and the perennial favourite

‘trivial’ are common proof techniques. These are especially popular among mathematics professors teaching

students, as it is vital to teach the next generation of researchers the importance this technique holds.
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the total number of elements permuted is n, this gives a one-to-one correspondence

with the partitions of n16. The number of irreducible representations of the symmetric

group must thus have to be the number of partitions of n. In fact, there is a canonical

way to construct such an irreducible representation in terms of a partition.

Let λ ⊢ n; λ is a partition of n, that is. Given λ one can construct a diagram

where the number of boxes in each row is one of the components of the partition. For

example, the partition (5, 3, 1) gives the Ferrers diagram:

The boxes can be filled in with numbers 1 to n to give a Young tableau17:
2 6 5 8 9

3 1 4

7

A tabloid is given by treating different orderings of the elements in its rows as the

same, so

2 6 5 8 9

3 1 4

7

= 2 5 6 8 9

1 3 4

7

= 8 9 2 6 5

4 3 1

7

. (3.3)

Given a partition λ ⊢ n, the representation of the permutation group given by linear

combinations of tabloids of that shape gives Mλ, the tabloid representation of that

shape18. It is important to note how the action of the permutation group permutes

the numbers, not the cells. A different way to write down a tabloid is as a coloring of

n cells: cell i is colored the color of row j if the number i is on row j in the tabloid.

The tabloid
2 5 6 8 9

1 3 4

7

thus corresponds to

.

The colorings with the desired number of each color are thus taken to each other

under permutation of the cells.

16Unlike just about any other combinatorial thing of the form ‘How many ways can you put n things in

k boxes counting so and so as the same’, there is no closed form for the partition functions. This is the first

hint of things going wrong. The generating function for the partition function is up to some simple factors

the Dedekind eta function and is the same as the number of states of a given level in a typical representation

of the Virasoro algebra, counts the number of states in the free boson in two dimensions and other such deep

connections. In other words, it’s a royal pain.
17Plural: tableaux. Don’t ask me why.
18This presumably keeps track of how various details of the personal lives of celebrities change under

permutation.
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This will be on the test later.

The number of tabloid representations, the number of partitions of n, is exactly the

number of irreducible representations. However, they are not irreducible19,20.

The actual irreducible representations are classified by Specht modules. The tabloids

were almost right: The Specht modules live inside them. They are spanned by taking

a given Young tableau, antisymmetrizing under permutations of the columns, and

then converting this linear combination of Young tableaux into a linear combination of

tabloids. Note that doing these operations in any other order is ill defined. Some long

and lengthy shenanigans end up showing that this subspace is irreducible and gives a

correspondence between irreducible representations and partitions.

Note how the symmetric combinations of the elements of a finite group correspond

to the conjugacy classes of the group; there are the same number of these as projec-

tors. The character table ensures that nothing silly happens, and so projectors can be

expressed in terms of sums of group elements.

One last thing. There is an partial ordering on partitions called dominance ordering,

with the partition with one component, corresponding to the trivial representation, on

top and the partition consisting of all ones, corresponding to the antisymmetric repre-

sentation21 on bottom. The reducible tabloid representation splits up into irreducible

representations, where each of the irreducible representations are above the tabloid

representation on the dominance order. The multiplicity of the irreducible represen-

tation Sλ in the tabloid representation Mµ is the Kostka number Kλµ. This gives an

triangular matrix with ones on the diagonals and is invertible.

Back to the matter at hand . . .

4 On the Train Tracks

Density matrix ρ. n copies. Operator expectation Tr (ρ⊗nO). Entropy what? Having

now obsoleted the preceding sections, let us continue on.

A density matrix can be diagonalized, so it’s easy to put the density matrix in

the form of a diagonal matrix with probability pi on state i22. The space of states is

spanned by configurations of the form |k1⟩ ⊗ |k2⟩ ⊗ . . .⊗ |kn⟩, ki ∈ 1, . . . , N . There are

no off diagonal elements of the density matrix in this basis and this actually reduces to

a classical probability question. Quantum effects are in retreat, we can advance with

19A simple demonstration of this fact can be seen by noting that the rest of the paper would have resolved

in a beautiful, elegant, and conceptually satisfying manner were this to be true. Therefore, Murphy’s theorem

proves it false.
20An actual demonstration of this fact comes from the one dimensional trivial representation being found

in each of the tabloid representations, which are not generically one dimensional.
21Would this be the anti-trivial representation?
22Except, of course, when there is any reason to be interested in the entropy in the first place.
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confidence, our system will be fully analyzed in short order, a chicken in every pot,

and world peace is just around the corner. Of course.

The probability for being in the state |k1, . . . , kn⟩ is pk1 . . . pkn . These states get

shuffled into each other under permutations. Subsets of this set of states with a given

number of the copies in a given state are taken to each other under permutation. This

is exactly a tabloid representation with the partition given by the state counts sorted

by number. So the state |1, 3, 2, 4, 1, 3, 3⟩ is in the sector with two copies in state 1, one

in state 2, three in state 3 and one in state 4. The sector is isomorphic to the tabloid

representation with partition 3, 2, 1, 1. The probability that there are ni states in state

i is thus
n!∏
i ni!

∏
i

pni
i . (4.1)

The two statistics that are familiar to us all are the Bose statistics and Fermi

statistics. Fermions, due to the Pauli exclusion principle, refuse to hanky-panky with

each other by occupying the same states as each other. Bosons, however, are rather . . .

gregarious. There are anyons and other such things too, but we will not be treading into

that little bear trap today23. The occupancy statistics of a bosonic and a fermionic state

follow the distribution of a Bernoulli trial and a geometric distribution, irrespectively24.

These are both quantum statistics, so what’s the classical version? It’s the Poisson

distribution, with probability mass function

P (n;λ) = e−λλ
n

n!
, n ∈ N. (4.2)

One annoyance that has not been dealt with so far is the fact that all the density

matrices are normalized, which is rather inconvenient when the the normalizing factor

contains all the information that one may be trying to figure out. Luckily, the Poisson

distribution plays nicely. Consider an unnormalized density matrix ρ̃. The normalized

one is ρ = ρ̃/Tr (ρ̃). So far n has been held constant. But now let n be distributed

according to a Poisson distribution with parameter Tr (ρ̃)λ, giving a probability distri-

bution going as

e−Tr (ρ̃)λ
∞∑
n=0

λnTr (ρ̃)n

n!
ρ⊗n = e−Tr (ρ̃)λ

∞∑
n=0

λn

n!
ρ̃⊗n (4.3)

The partition functions denominators have nicely canceled, while taking an expectation

value for large λ averages over the expectation values with the normalized ρ for large

n. The probability of the state having ni copies in state i is

e−Tr (ρ̃)λλ
n

n!
n!

∏
i

p̃ni
i

ni!
=

∏
i

e−p̃iλ
λnp̃ni
ni!

. (4.4)

23I have the premonition that I might have to thoroughly confuse myself with some generalized version

of anyons someday.
24Giving two lists that needs to be matched and then tacking ‘respectively’ at the end has often caused

no end of confusion. Therefore, not doing that must not be confusing, right?
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It factorizes into a separate little Poisson for each state! A situation where this kind of

Poisson might occur is in the following. Considering adding an additional state |e⟩ to
the Hilbert space, bringing it to C⊕CN . Then one possible density matrix to construct

is (
1 +

λTr ρ̃

M

)−1(
|e⟩⟨e|+ λ

M
ρ̃

)
(4.5)

for some very large integer M . Then, consider the tensor product of M copies of

that state. Measuring whether a state is in |e⟩ or not commutes with everything of

interest, so the previous operators can be translated to here by applying them to a

state with a pre-specified configuration of e’s and then summing over the projectors

onto those configurations. By construction, the number of not-e’s is distributed exactly

corresponding to a Poisson distribution, so it reduces to the earlier case. See also how

the number of copies in each specific state naturally sorts into independent Poissons

with the right rates. Amusingly enough, the von Neumann entropy of this state comes

out to something sensible in terms of the von Neumann entropy of the original density

matrix while the dependence on the Renyi entropy goes to zero as M is taken to

infinity. Another example of power counting and the replica trick doing fishy things in

back alleys.

The Poisson process above gives the occupancy counts of each state. The possible

assignments with a given occupancy count are taken to each other by permutation and

so are in some sense irreducible sets. If this was a bucket of dice, occupancy counts

would be exactly the correct kind of thing to look at. However, these are density

matrices. Lumping all terms that give the same tabloid representation already gives

some nasty correlations and even that is not the end of it. What the measurement

actually separates is the irreducible representations, which are even more of a pain to

deal with. This makes calculations of such things as the uncertainties and suchlike a

right pain.

What can be done is to calculate the physicist’s old friend, expectation values of

operators. The whole start of the mess came from the Renyi estimates, so let’s calculate

those. The trace of a cyclic shift is the sum over colorings that the shift leaves invariant.

In the cycle, all the colors have to be the same. The number of ways that this can

happen is

∑
i

(n− k)!

(ni − k)!
∏

j ̸=i nj !
. (4.6)

This gives the expectation value ∑
i

ni!(n− k)!

(ni − k)!n!
, (4.7)

where both of the sums over i are restricted to where ni ≥ k. Note how this approaches

the dice bucket counting for the exponential of the Renyi entropy when ni is large. By
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construction, the average value of this estimate gives the correct value of Tr (ρk) when

n ≥ k. The n < k case has to be dropped for sensibility’s sake. As λ becomes large,

the probability of being in a state where n < k drops about exponentially, so this gives

the average over the Poisson case as approaching the correct value exponential-ish in

Tr (ρ̃)λ. Now, the von Neumann entropy can be found at the derivative when n = 1,

so there is nothing preventing considering the value of the estimate there.

Some good ol’ fashioned bashing with the properties of the gamma and digamma

functions gives the formula for the entropy estimate coming from analytic continuation

as ∑
i

n−1∑
m=ni

1

m

ni

n
. (4.8)

My old nemesis for the duration of this jaunt, the replica trick, has subtly slipped

in an attempt at sabotage. There is an ambiguity when ni is zero, where one has to

decide what happens when m hits zero. The analytic continuation specifies that the

ni/m should go to one. This improves the asymptotics of the entropy estimate when

the dimension of the Hilbert space is finite. In a infinite dimensional space, or at least

the case when there are a significant fraction of the states unfilled even when λTr (ρ̃) is

large, this term gives the wrong estimate for the entropy. When using sketchy tricks,

let the buyer beware.

So let’s do our due diligence and show that the corrected entropy estimate con-

verges to the right answer. The average over the Poisson distribution is such that the

asymptotics in n and the asymptotics in λTr (ρ̃) can be recovered from each other.

And the Poisson averaged case is so much easier to calculate.

A single term of the estimate is

(n−ni)+ni−1∑
m=ni

1

m

ni

(n− ni) + ni
(4.9)

Crucially, it depends only on ni and n⊥ = n − ni. But the distribution of these two

variables is known: ni and n⊥ follow two independent Poisson distributions. The rate

for ni is λp̃i and the rate for n⊥ is λp̃⊥, where p̃⊥ = Tr (ρ̃) − p̃i. Instead of doing N

sums, we only need two.

One may be tempted to leave the remaining calculation as an exercise to the reader,

but I won’t do that here out of the goodness of my heart25. The averaged estimate is

∞∑
ni=0

∞∑
n⊥=0

e−λ(p̃i+p̃⊥) (λp̃i)
ni(λp̃⊥)

n⊥

ni!n⊥!

ni+n⊥−1∑
m=ni

1

m

ni

n⊥ + ni
. (4.10)

Reshuffling the indices with ni = u, m− ni = v, n−m = w gives

e−λTr (ρ̃)
∞∑
u=0

∞∑
v=0

∞∑
w=0

λu+v+wp̃i
up̃⊥

v+w 1

u!(v + w)!
(1− δw)

u

u+ v

1

u+ v + w
. (4.11)

25I need to refer to an intermediate step in the calculation later, that is.
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This is the kind of expression that can be solved by whacking it over the head with

generating functions until it confesses. The last three sub-terms on the right turn into

a rather fiddly two parameter integral over aubvcw. If one denotes f(a, b, c) = aubvcw,

then

(1− δw)
u

u+ v

1

u+ v + w
(4.12)

=

∫ 1

0
dx

∫ 1

0
dy (1− δw)ux

u+v−1yu+v+w−1 (4.13)

=

∫ 1

0
dx

∫ 1

0
dy ∂a(f(xy, xy, y)− f(xy, xy, 0)). (4.14)

Note how this is using the 0/(0 + 0) = 0 version of the estimate.

The generating function is

e−λTr (ρ̃)eλp̃ia
1

b− c

(
eλp̃⊥bb− eλp̃⊥cc

)
. (4.15)

The rather peculiar form of the expression comes from the factorials in the denominator

has a (v + w)! instead of a v!w!, giving a truncated geometric series in the sum when

v + w is held fixed. Note that without this, there is no way for logs to come up.

Now, put all the ingredients into a pot then heat to a low simmer.∫ 1

0

∫ 1

0
dx dy λp̃ie

−λTr (ρ̃)eλp̃ixy[
1

y − xy

(
eλp̃⊥yy − eλp̃⊥xyxy

)
− 1

xy

(
eλp̃⊥xyxy − 0

)] (4.16)

= λp̃i

∫ 1

0

∫ 1

0
dx dy

1

1− x
e−λ(1−y)Tr ρ̃

(
e−y(1−x)p̃i − e−y(1−x)Tr ρ̃

)
(4.17)

Stir for 10-20 minutes until curdling occurs.

= λp̃i

∫ 1

0

∫ 1

0
dt ds

1

t
e−λsTr ρ̃(e−(1−s)tp̃i − e−(1−s)tTr ρ̃) (4.18)

Drain the curds, then press into cheese.

=
p̃i
Tr ρ̃

∫ 1

0

∫ 1

0
ds dte−λsTr ρ̃(1− s)

∫ 1

p̃i
Tr ρ̃

e−(1−s)tw dw (4.19)

=
p̃i
Tr ρ̃

∫ 1

p̃i
Tr ρ̃

[
1

w

(
1− e−λTr ρ̃w

)
− 1

1− w

(
e−λTr ρ̃w − e−λTr ρ̃

)]
dw (4.20)

Store in a cool, dry place. Choking hazard, small parts. Not suitable for children under

the age of three.

Anyways . . .

The first of the four terms gives the exact value for that component of the entropy.
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The rest give corrections. The 1/(1−w) terms give a correction of order p̃i
Tr ρ̃

1
λTr ρ̃e

−λp̃i ,

which amounts to asymptotically small potatoes in any limit26. The w−1 exp(−λTr ρ̃w)

term is more interesting. It works to cancel the 1 at small w’s, causing the log term to,

instead of soaring high and free like it wants, level off when λp̃i starts to drop below

one and ni starts having a significant probability of being zero. This acts as an effective

cutoff on the probabilities contributing to the entropy. See how the effect of this drops

out as λTr ρ̃ increases because of the convergence of the entropy. Asymptotically, the

term limits to e−λp̃i , which might seem like a problem since the p̃i/Tr ρ̃ has canceled,

but the formula is only valid for λp̃i large. Indeed this ‘problem’ is exactly what the

extra term that the replica trick was trying to sneak in was there to cancel.

There is the question, however, of what bloody operator the damn estimate is

supposed to correspond to. This is not so bad. Fixing a value of ni and n gives

a contribution, when the 1
n!(λTr ρ̃)

n is taken out, of pni
i (1 − pi)

n−ni . Summing over i

makes this Tr (ρni(1−ρ)n−ni), making the relevant operator the sum over conjugation of

the appropriate cycle permutations. One might then ask further questions, like what

the uncertainty of the estimate is, how the estimate, which has the same binomial

coefficient problem as earlier, might be calculated from the path integral, and how the

value breaks up over the actual, measured, irreducible representations27. At this point,

everything nice that has just happened just stops working and a cloud of darkness falls

upon the whole enterprise.

The most basic question is what the probabilities are for finding ρ⊗n in a given

representation. This doable, but already annoyingly nontrivial. The probability of

landing in a given tabloid representation is the sum of permutations of pn1
1 . . . pnk

k times

the dimension of the representation. A symmetric polynomial, that is. The Kostka

numbers which dictate the way tabloids break up into irreducibles can be written in

terms of such polynomials and some shuffling gives the expression for the probability

as

Pλ = dimλ sλ(p1, p2, . . .). (4.21)

sλ is a symmetric polynomial known as the Schur polynomial, which is a ratio of two

determinants28. The denominator is the measure that comes up in random matrix

theory, oddly enough.

What does the entropy estimate look like on the individual irreducible representa-

tions? I don’t know. What’s the uncertainty of the entropy estimate? Well it’s related

to the average of the squares of the coefficients on the irreducibles. Perhaps it could

be analyzed by multiplying out the conjugacy classes by hand, but that turns into a

pretty quagmire after a bit when the cycles get big. So, I don’t know. One hopes to

do QES type things or condensed matter physics or suchlike using this. For quantum

26These potatoes are especially prized in haute cuisine, vanishing in the limit as food approaches the

table.
27I’m hoping to reach eight commas in a sentence someday.
28At least when N = n. I’m not sure. Schur. Ha.
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gravity calculations, this requires knowing the physical properties of such things as

how a defect line attached to permutation group projectors acts like in the replica trick

when there is a very large number of replicas. How could you do that? I don’t know.

For that matter, what does the probability distribution over partitions even look

like at large n? I don’t know. However, it looks like someone else does. There seems

to be a paper about the asymptotics of the Schur polynomial29. Highlights include

random matrix theory, the GUE, an infinite dimensional unitary group, q-deformations

thereof, and a random lozenge. A paper on the related topic of the character table

of the symmetric group at large n30 offers non-crossing partitions, non-commutative

probability, a genus expansion over two dimensional surfaces, and the Jucys-Murphy

element. This would all be very useful if I actually understood any of this.

At this point, one may be tempted go give up, so that is exactly what I did. Good

night and I hope you enjoyed the show.

29arXiv: 1301.0634
30arXiv: math/0304275
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