
Useless Notes #2: Sign-B-Gone

1 Grassmann’s Curse

Often in physics, and sometimes in mathematics, things anticommute. Generally, every

scalar, function, operator, everything that multiplies, has a label denoting whether it is

Grassmann even or Grassmann odd, dictating whether it is supposed to act in a commutative

or an anti-commutative way. I will often interchangeably use ‘bosonic’ for Grassmann even

and ‘fermionic’ for Grassmann odd, but some people may complain about this.

Fermionic scalars anticommute: if a and b are Grassmann-odd, then

ab = −ba. (1)

Bosonic scalars commute with everything.

The problem is that whenever you do anything more complicated, massive snowdrifts of

signs start piling up as symbols start moving past each other. As just a taste, consider the

graded commutator of two operators: given operators A and B, this is defined as

[A,B] = AB − (−)|A||B|BA, (2)

where (−)|A| is + if A is Grassmann even and − if A is Grassmann odd. Then the Jacobi

relation is

±[[A,B], C]± [[B,C], A]± [[C,A], B] = 0 (3)

for some choice of the three signs, but which ones are the correct ones? This calculation,

specifically, is merely rather annoying. If you try anything actually involved, however, the

signs will progress beyond mere annoyance and you will find you might as well be trying to

swim to Cockaigne.

The actual instigator for me developing the two pieces of notation in this writeup was

dealing with the signs in the Batalin–Vilkovisky (or BV) formalism, so I will be using it as

a running example of the application of my notation.

In the BV formalism, there is some list χn, n = 1, . . . , N of ‘fields’ and a corresponding

list χ‡
n of ‘anti-fields’ of the opposite Grassmann parity. Given functions F (χn, χ‡

n) and

G(χn, χ‡
n), the BV bracket is defined as

(F,G) =
∑
n

(
∂RF

∂χn

∂LG

∂χ‡
n

− ∂RF

∂χ‡
n

∂LG

∂χn

)
. (4)
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The ∂L and ∂R denote differentiation from the left and differentiation from the right, respec-

tively. These differ because if θ1 and θ2 are separate fermionic variables, then

∂L(θ1θ2)

∂θ1
= θ2, (5)

while
∂R(θ1θ2)

∂θ1
= −∂R(θ2θ1)

∂θ1
= −θ2. (6)

Like the commutator, the BV bracket has a fixed behavior under swapping F an G and

satisfies a Jacobi relation. Attempting to work these out directly, however, is going to be

too painful to handle, which is why we are going to need to improve the notation.

2 On the Origin of Signs

Before I can lift the sword of notation to strike at this infestation of signs, I must first devote

some time to the study of the life-cycle of these creatures. In particular, what principle

determines the signs in expressions like the graded commutator?

It turns out that all signs are controlled by the behavior of the scalars. For example,

the Grassmann parity can be diagnosed by whether it commutes or anticommutes with a

generic fermionic scalar. Then, you can fix the signs in the graded commutator of operators

by demanding for a generic fermionic scalar η,

η[A,B] = [ηA,B] = (−)|A|[Aη,B] = (−)|A|[A, ηB] = (−)|A|+|B|[A,B]η (7)

There is a minor problem here. There is not in fact any such thing as ‘a generic fermionic

scalar’. Were this a bosonic scalar, one could check that the formula works for each real

number but there’s no value you can assign to an anticommuting scalar other than zero.

The resolution to this puzzle comes from the algebraic geometers, who have had to deal with

the same problem.

In algebraic geometry, one focuses on the algebras of functions rather than on the points

themselves. Given a commutative ring (i.e. a set of functions with addition and multiplica-

tion), there is a way to assign a set of points to it and a notion of the value of a function at

a point but a function is not necessarily determined by its value at all of the points. This

happens whenever there are (non-zero) functions f such that fn vanishes for some positive

integer n. This is exactly the situation that we’re dealing with here: anything fermionic

squares to zero.
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When Grothendieck proposed functions which aren’t determined by their value at all

points, the algebraic geometers of the time found it abhorrent, but like many abhorrent

things, it came to be accepted since it was simply too useful for proving theorems.

The result is that we will need to do everything in families. Let one have a ‘supermanifold’

parameterized by the anti-commuting coordinates θ1, . . . , θn. (A supermanifold is a space

that can be locally parameterized by coordinates which can be either bosonic or fermionic,

just as an ordinary manifold is locally parameterized by bosonic coordinates.) This produces

a ring of functions R with elements of the form

f(θi) = f (0) + f
(1)
i θi + f

(2)
ij θ

iθj + . . . , (8)

where f
(n)
ijk··· is antisymmetric in its indices. Then, we will demand that any construction

works for an arbitrary ring of scalars and is compatible with extension to a larger ring of

scalars (i.e. replacing each coordinate θi by a function θi(ηa) for some other system of

coordinates ηa).

So now given a graded vector space V = V0 ⊕ V1, where V0 denotes the bosonic elements

and V1 denotes the fermionic elements, you can construct the R-module R⊗V . (A R-module

is a set which possesses the structures of addition and multiplication by scalars in R.)

Given a general R-module M with an action by scalars on the left, this gives an action

on the right by

m · r = (−)|r||m|r ·m. (9)

This sign is forced since without it,

(r1r2) ·m = m · (r1r2) = (m · r1) · r2 = r2 · (r1 ·m) = (r2r1) ·m, (10)

which is wrong.

Now consider a homomorphism ϕ : N → M of R-modules. In the bosonic case, such a

function is required to satisfy ϕ(rm) = rϕ(m). A morphism can also be multiplied by a scalar

giving (r · ϕ)(m) = r · (ϕ(m)). In the super case, these two prescriptions are contradictory.

There are two resolutions: the function ‘acting from the left’ and the function ‘acting from

the right’. In the former case, one has

ϕ(m · r) = ϕ(m) · r (r · ϕ)(m) = r · ϕ(m). (11)

In latter case, let the action of ϕ on m be m ◦ ϕ. Then, we have

(r ·m) ◦ ϕ = r · (m ◦ ϕ) m ◦ (ϕ · r) = (m ◦ ϕ) · r (12)

I have deliberately written these relations so that there are no explicit signs. Note that when

written this way, the symbols do not change their order. There is a broader lesson here: the
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general rule is that to all there is a natural order and signs always correspond precisely to

the changes in order of the symbols.

What counts as a ‘symbol’ can sometimes be a bit funny: in the case of the BV bracket,

the bracket swaps the Grassmann parity relative to the total parity of its arguments. One

can check that the fermionic scalars act as

η(F,G) = (ηF,G) = (−)|F |(Fη,G) = (−)|F |+1(F, ηG) = (−)|F |+1+|G|(F,G)η, (13)

so really, that comma is fermionic.

3 Abstract Indices

The first of our notations will be to deal with the fact that the different fields χn have different

Grassmann parity. The problem is now that the traditional form of index notation will no

longer be able to handle the signs correctly. For example, suppose that the standard Einstein

summation prescription of just summing over all values of the indices worked correctly for

the contractions vn1w1,n and vn2w2,n. Then, we will be forced to have∑
n,m

vn1w1,nv
m
2 w2,m =

∑
n,m

(−)|w1,n||vm2 |vn1 v
m
2 w1,nw2,m. (14)

So the moment you start shuffling symbols around, the signs wreck the index notation.

What we could do is to manually work out the rules for all of the signs by consistency. This

would be rather difficult, so I will instead turn to using the category theory of the situation.

Now, I have generally found that pure category theory is always trivial, if sometimes in a non-

trivial way. Category theory can help organize calculations and help you guess what sort of

things you should and shouldn’t write down, but it will not help you directly with the actual

business of extracting numbers. What we’re trying to do here, however, is designing notation,

which is precisely organizing calculations and determining what the allowed expressions are,

so abstract nonsense will be of direct use to us here.

This list of fields is supposed to come from a basis of some super vector space V . More

generally, one can let V be a (free) R-module, for some ring of scalars R. Given multiple

vector spaces, V1, V2, . . . , Vn, one can form a tensor product

V1 ⊗R V2 ⊗R · · · ⊗R Vn. (15)

The relative tensor product ⊗R is like the usual one, but with the additional condition that

(v1 · r)⊗ v2 = v1 ⊗ (r · v2) for all r ∈ R, not just the real/complex numbers.
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There is a canonical map V1 ⊗R V2 → V2 ⊗R V1 which preserves the R-module structure.

This is the one which has the correct sign:

v1 ⊗ v2 7→ (−)|v1||v2|v2 ⊗ v1. (16)

This swap operation gives the structure of a symmetric monoidal category, which just means

that this swap gives rise to consistent permutations of larger tensor products and is compat-

ible with composition with other functions.

The essence of contraction of indices is the existence of a dual space V ∗ (in this case

another R-module) and a contraction map V ∗ ⊗R V → R. Given a vector v ∈ V , let one

attach an abstract index vA to it. Then, given a dual vector w ∈ V ∗, one can form the scalar

contraction vAwA. Given a larger tensor product whose factors are V and V ∗, the maps one

can make correspond exactly to the possible contractions of the indices. The signs are forced

by the symmetry rules interchanging the factors.

Now, being canonical is nice and all, but you might want to work with a basis at some

point. Suppose one has a basis e1, . . . , en ∈ V . Restoring the abstract index gives eAi , where

i is a literal index that varies from 1 to n and A is the abstract index. One can also construct

a left dual basis f i
A satisfying f i

Ae
A
j = (−)|i|eAj f

i
A = δij. Here |i| = |ei| = |f i|. The right dual

basis differs by multiplication by (−)|i|, which is related to the difference between right and

left differentiation.

Now, for example, one can expand the identity map in terms of basis elements

δAB =
∑
i

eAi f
i
B (17)

and check that δABe
B
i = eAi . This explains why the supertrace of a matrix is the trace of the

bosonic part minus the trace of the fermionic part: the trace of the identity is

δAA =
∑
i

eAi f
i
A =

∑
i

(−)|i|f i
Ae

A
i =

∑
i

(−)|i|. (18)

We can now deal with coordinates and taking derivatives without having to deal with

the annoying sign problems. Given a function f on a patch of super-manifold parameterized

by a super-vector space V , one can now take the coordinates to be xA, where A is an

abstract index for V . The advantage of this is that x is now a purely bosonic symbol and

the contraction rules are now clear. One can now construct a derivative ∂A such that

∂A(wBx
B) = wA. (19)

This ∂A is also a purely bosonic symbol.
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As an application, let us return to our BV bracket. We want to assemble our list of fields

χn and antifields χ‡
n into one object. (In the more general version of the BV formalism, there

is no inherent distinction between the fields and the antifields and one only keeps track of

the odd symplectic structure – but what’s the defintion of an odd symplectic structure?)

A coordinate is a function that takes in the point and outputs a number, so it lives in

the dual space. So we have dual basis elements [χn]A and [χ‡
n]A along with basis elements

[χ∨
n ]

A and [χ‡∨n]A. Let us pick the signs such that

[χ∨
n ]

A[χm]A = δmn , [χ‡∨n]A[χ‡
m]A = δnm, (20)

and the cross terms vanish.

Now, we can construct the combined field

ΨA =
∑
n

(
χn[χ∨

n ]
A + χ‡

n[χ
‡∨n]A

)
(21)

so that

χn = [χn]AΨ
A, χ‡

n = [χ‡
n]AΨ

A (22)

Note that the above equations are independent of order since ΨA is now bosonic.

The derivative ∂Aχ
n = [χn]A, so

∂LF (Ψ)

∂χn
= [χ∨

n ]
A∂AF,

∂RF (Ψ)

∂χn
= (−)|χ

n|∂AF [χ
∨
n ]

A (23)

So now we can re-express our BV bracket as

(F,G) = ∂AFε
AB∂BG, (24)

where

εAB =
∑
n

(−)|χ
n| ([χ∨

n ]
A[χ∨‡n]B + [χ∨‡n]A[χ∨

n ]
B
)
. (25)

We now see that our inverse symplectic form εAB is actually symmetric under swapping its

indices. (One of χn and χ‡
n is bosonic for each n, so they commute.)

The odd symplectic form itself is

ηAB =
∑
n

(
[χ‡

n]A[χ
n]B − [χn]A[χ

‡
n]B

)
(26)

and satisfies

ηABε
BC = δCA . (27)
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This time, ηAB is antisymmetric in its indices. This antisymmetry is forced by

ηABε
BC = δCA = εCBηBA = −ηBAε

BC . (28)

It’s now pretty easy to guess the appropriate conditions on the general version of the BV

formalism: you want a fermionic ηAB(Ψ), antisymmetric in its indices, satisfying

∂AηBC + ∂BηCA + ∂CηAB = 0 (29)

and with inverse εAB giving the bracket

(F,G) = ∂AFε
AB∂BG. (30)

Just like in the usual symplectic case, to any function F there is a vector field

∂AFε
AB∂̂B, (31)

where I’ve put a hat on ∂̂B to denote that this is a vector field rather than an actual derivative.

There is now the relation

[∂∗Fε
∗∗∂̂∗, ∂∗Gε

∗∗∂̂∗] = ∂∗(F,G)ε
∗∗∂̂∗, (32)

where I am now eliding neighboring indices contracted like matrix multiplication, so

wAM
A
Bε

BCηCDT
D
EFv

F becomes w∗M
∗
∗ε

∗∗η∗∗T
∗
E∗v

∗.

Therefore, the Jacobi relation on vector fields gives rise to the Jacobi relation of the BV

bracket. (This is potentially up to a constant term, but that can be killed by choosing F

and G well.) Working this out is still a bit annoying, since the interchanges of the order of

the functions F and G still cause signs.

4 Sign Indicators

The way to deal with these last signs is by separating the order that the Grassmann signs

see from the order of the symbols on the page. Therefore, let us introduce sign indicators of

the form JabcK. These indicators mean either plus or minus depending on the relative order

of the symbols in the expression in the brackets to the expression outside. For example, for

scalars a and b,

ab = JabKab = JabKba, (33)

while

JbaKab = JbaKba = ba = (−)|a||b|ab. (34)
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The use of the sign indicators comes when the order of the symbols in the expression is

fixed by other considerations. The graded commutator of two operators A and B is now

[A,B] = AB − (−)|A||B|BA = JABKAB − JABKBA. (35)

I will often abuse my own notation and treat the sign indicator as a separate term that can

be factored out:

[A,B] = JABK(AB −BA). (36)

When two of the same fermionic symbol come up, you will need to disambiguate them

(here a subscript in double brackets) so that the relative order between the sign indicator

and the expression is well defined. So if ψ is a fermionic operator, then its anticommutator

with itself is

{ψ, ψ} = JψJ1KψJ2KK{ψJ1K, ψJ2K} = JψJ1KψJ2KK(ψJ1KψJ2K − ψJ2KψJ1K) = 2JψJ1KψJ2KKψJ1KψJ2K = 2ψ2.

(37)

The second to last equality comes from swapping the labels on the second term and then

swapping the order of symbols in the sign indicator to bring it back to JψJ1KψJ2KK.

In a larger expression Ja1a2 · · ·K, swapping any two neighboring symbols ai and ai+1 gives

a sign of (−)|ai||ai+1|. The effect of swapping symbols farther apart in general depends on the

Grassmann parity of the symbols between them. However, if they are known to be bosonic,

then they obviously have no effect under changing places and swapping two fermionic symbols

always gives a minus sign no matter where they are placed.

Finally, in the course of manipulations, symbols can disappear and be created. To account

for this, I will denote JÂB̂/CDEF K to denote pulling CDEF out from the expression (in

that order) and replacing them with AB. In order for this operation to be consistent, the

total Grassmann parity of AB must be the same as the total Grassmann parity of CDEF .

Thus, if one has fermionic operators ψ and ψ̄ satisfying {ψ, ψ̄} = 1, then

J· · ·ψψ̄ · · ·K · · ·ψψ̄ · · · = J· · ·ψψ̄ · · ·K · · ·
(
ψ̄ψ + Jψ̂ ˆ̄ψ/·K1

)
· · · . (38)

Let’s apply our notation to the case of the BV bracket. First, the symmetry of the BV

bracket is such that

JFεGK(F,G) = JFεGK∂AFεAB∂BG = JFεGK∂BGεBA∂AF = JFεGK(G,F ) (39)

The ‘comma’ of the BV bracket carries Grassmann parity, so it needs to be accounted for in

the sign indicator. On the other hand, the derivatives ∂A and the miscellaneous indices all

carry no Grassmann parity due to the magic of abstract index notation and can be dropped.

8



Unwinding the sign indicator gives

(F,G) = (−)|F |+|G|+|F ||G|(G,F ). (40)

(The reversal of three symbols can be created by three transpositions of neighboring ele-

ments.)

Now we can check the commutator of the associated vector fields without introducing

more signs than necessary. In gory detail,[
∂∗Fε

∗∗
J1K∂̂∗, ∂∗Gε

∗∗
J2K∂̂∗

]
= JFεJ1KGεJ2KK

[
∂∗Fε

∗∗
J1K∂̂∗, ∂∗Gε

∗∗
J2K∂̂∗

]
= J· · ·K

(
∂∗Fε

∗∗
J1K∂∗

(
∂AGε

AB
J2K

)
− ∂∗Gε

∗∗
J2K∂∗

(
∂AFε

AB
J1K

))
∂̂B

= J· · ·K
(
∂∗Fε

∗∗
J1K∂A∂∗Gε

∗∗
J2K + ∂∗Fε

∗∗
J1K∂AG∂∗ε

AB
J2K

+ ∂∗Gε
∗∗
J1K∂A∂∗Fε

AB
J2K + ∂∗Gε

∗∗
J1K∂AF∂∗ε

AB
J2K

)
∂̂B

= J· · ·K
(
∂A(∂∗Fε

∗∗
J1K∂∗G)ε

AB
J2K

− ∂CF∂DGε
AB
J2K ∂Aε

CD
J1K + ∂CF∂AGε

CD
J1K ∂Dε

AB
J2K + ∂AF∂CGε

CD
J1K ∂Dε

AB
J2K

)
∂̂B

= J· · ·K
(
∂A

(
F,J1KG

)
εAB

J2K + ∂CF∂DG
(
εBA

J1K ∂Aε
CD
J2K + εCA

J1K ∂Aε
DB
J2K + εDA

J1K ∂Aε
BC
J2K

))
∂̂B

=
q
FεJ1KGεJ2K

y
∂∗(F,J1KG)ε

∗∗
J2K∂̂∗

= ∂∗(F,G)ε
∗∗∂̂∗.

(41)

This looks a bit gnarly, but the derivation of the corresponding identity for the ordinary

symplectic case has precisely the same steps. I have freely used the fact that swapping J1K
and J2K in the expression (but not the sign indicator) contributes a minus sign. I have also

used the identity

εAD∂Dε
BC + εBD∂Dε

CA + εCD∂Dε
AB = 0 (42)

which is a consequence of the closure condition on the odd symplectic form η and the identity

∂Aε
BC = −εB∗∂Aη∗∗ε

∗C which is a general fact about the variation of the inverse of a matrix.

We can now finally write down and derive that Jacobi relation.

((F,G), H) =
q
FεJ1KGεJ2KH

y
∂∗(F,J1KG)ε

∗∗
J2K∂∗H (43)

= J· · ·K
(
∂∗Fε

∗∗
J1K∂∗

(
∂∗Gε

∗∗
J2K∂∗H

)
− ∂∗Gε

∗∗
J2K∂∗

(
∂∗Fε

∗∗
J1K∂∗H

))
(44)

= J· · ·K
(
(F,J1K (G,J2KH)) + (G,J1K (F,J2KH))

)
, (45)

so q
FεJ1KGεJ2KH

y (
((F,J1KG),J2KH) + ((G,J1KH),J2K F ) + ((H,J1K F ),J2KG)

)
= 0. (46)

Easy peasy. (For the appropriate definition of ‘easy’ and the appropriate definition of

‘peasy’.)
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