
Useless Notes #3: How to Čech Your Actions

I need to do explicit, concrete calculations with differential cohomology. Since I keep on

forgetting all the signs, I’m writing it down here. The reason for this is the Chern-Simons

action. This has the famous formula∫
k

4π
tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (1)

where A is the connection, an adjoint-valued one-form. The issue is that this requires a trivial

G-bundle, which you are not always afforded; generally you can only specify a connection

on local patches and then you have to have transition maps linking the patches.

Often, it is possible to bypass this sort of issue. For example, if the gauge group G is

simply connected, all bundles on 3-manifolds are topologically trivial and the above formula

works. Another approach is the express the 3-manifold as the boundary of a 4-manifold and

then take the integral of tr (F ∧F ). But this is sort of unsatisfying because this is not local.

The Chern-Simons (and WZW, etc.) theory is supposed to be a local QFT, not some system

coupled to some sort of topological junk.

So I went and worked out the correct local form for the Chern-Simons action on a general

bundle. In each patch, the Lagrangian density 3-form is the same as (1). But now, a

the boundary between patches, there is a further boundary term, then at the codimension

two boundary between three patches there is another term and at the codimension three

boundary between four patches there is yet another term. This last one is the integral over

a zero-dimensional boundary of a zero-form. This zero form will turn out to be valued in

U(1) rather than R and is the reason for the discretization of the level. No tomfoolery with

extending connections is required.

1 The Čech-de Rham Complex

The mathematical machinery which can handle this chain of boundary terms combines de

Rham cohomology (which is the usual thing with n-forms and the exterior derivative) an

a system for managing patches and boundaries between patches called Čech cohomology.

But now, we have a tensor product between two chain complexes containing anti-commuting

things, so the dreaded super-signs come up here. This means that we’re going to have to

take things a bit carefully.

Let’s say that we have a d-dimensional manifold M . We can cover M with simpler open
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subsets, Ui, indexed by 1 ≤ i ≤ N . Then, let the intersection of these patches be

Ui0···in = Ui0 ∩ · · · ∩ Uin . (2)

Then we can start playing make-believe and pretend we are working in a different topo-

logical space constructed by gluing together together pieces shaped like

∆n × Ui0···in . (3)

Figure 1: They’re the same picture.

Do this gluing right and you get a shape which is just the same as M , cohomologically

speaking1. Now we can put in the boundary terms as n-forms living inside the interstitial

webbing between the patches.

The easiest way to set up all the bookkeeping is to use cohomology’s lesser known cousin,

cocohomology, which used to be2 known as homology. Instead of dealing with n-forms, it

deals with integration contours and their boundaries.

The usual case of this is to say that a chain is an integer linear combination of fragments

of an integration contour. Since it turns out that all integration contours that are relevant

here can be built out of simplices, this in practice gives chains as things of the form

N∑
i=1

ni[σi], (4)

1This is because there is a projection onto M forgetting all the damn simplex nonsense and the fiber of

the projection is always a simplex, which is contractible.
2And still is.
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where N and ni are some integers and the σi are maps ∆n → M , where ∆n is the n-simplex.

If one denotes the n-simplex with vertices i0, . . . , in as [i0 · · · in], then the boundary of

the n-simplex [0 · · ·n] is

∂[0 · · ·n] =
n∑

k=0

−k[0 · · · k̂ · · ·n], (5)

where k̂ denotes removing k from the sequence and −k is shorthand for (−1)k. This makes

the O.G. chain complex of chains of dimension n with differential given by ∂. Famously,

∂2 = 0 because the boundary of a boundary vanishes. Then the homology groups are the

closed chains γ satisfying ∂γ = 0 (which is why they’re called closed) modulo the exact ones

of the form γ = ∂α. But I don’t actually care about the homology groups.

Given a n-dimensional chain γ in some manifold M and a n-form ω on M , you can

integrate
∫
γ
ω and we have that the Stokes theorem says

∫
γ
dω =

∫
∂γ

ω.

Let’s move on to more annoying pastures. In our franken-manifold, we have the natural

chains spanned by terms of the form

[i0 · · · in]× [σ], (6)

where σ is a map ∆n → Ui0···in . And now here come the signs. What we have here is a tensor

product of things of mixed anticommutingness and that means we need to make sure the

notation is consistent. (See the previous writeup on supersigns.) Now, standard convention

dictates that we act by both the homology differential ∂ and the cohomology differential

d on the left. But ⟨∂γ, ω⟩ ̸= ⟨γ, dω⟩ normally. The least janky resolution to this is to, if

R is the super-algebra of scalars, make the cohomology a R-module and homology a Rop

module, where Rop has the order of multiplications reversed. So now in order to bring γ and

ω together, the dictums of the notation demand that you write ⟨γT , ω⟩ to make a scalar that

lives in a R-module. Now,

⟨(∂γ)T , ω⟩ = ⟨γT∂T , ω⟩ = ⟨γT , dω⟩ (7)

and they lived happily ever after.

Coming back to the chains, we have the test chains [i0 · · · in] × γ for chains γ in Ui0···in
and these collide with co-chains ω. Let

ωi0···in = ([i0 · · · in])T · ω (8)

be a (d− n)-form on Ui0···in such that

⟨([i0 · · · in]× γ)T , ω⟩ =
∫
γ

ωi0···in . (9)

3



At times I will get lazy and omit all the i’s so that ωi0···in becomes ω0···n instead3.

The boundary of the test chain equals

∂([i0 · · · in]× γ) = (∂[i0 · · · in])× γ + (−)n[i0 · · · in]× ∂γ. (10)

We can split the corresponding differential on ω into d+ δ̌, where d is the exterior derivative

component and δ is the Čech part. One can check that

(dω)i0···in = −ndωi0···in , (11)

(δ̌ω)i0···in =
n∑

k=0

−kωi0···îk···in . (12)

We can split ω into ω(0)+ω(1)+ · · ·+ω(n), where ω(k) is a (n− k)-form on a codimension

k boundary. In particular, ω(n) is a 0-form on a codimension n boundary – if we want our

integrals around n-cycles to be valued in R/Z instead of R, all we need to do is to make ω(n)

to be R/Z-valued.

Since all the whatever n-form fluxes twisted by blah blah blah terms have the above sort

of property, presumably they ought to be written in this differential cohomology form if you

really want to be careful about discretization of the fluxes.

2 True Lie-s

Before proceeding to Chern-Simons action, a quick crash course on the homotopical prop-

erties of the Lie groups. One of them is U(1), which is just a circle. A map into U(1) is

characterized by the integer elements of the first cohomoology group H1(M,Z) giving how

much the map winds about each cycle. The U(1) bundles are shifted up a degree and are

characterized by the integer fluxes valued in H2(M,Z). This is the boring case, so I will

instead focus on the case of a compact, nonabelian Lie group G with simple Lie algebra.

We are interested in the topology of the space of possible G-bundles. This is controlled

by the classifying space, BG. This space is a lot like our Čech franken-manifold from earlier,

glued together out pieces of manifolds and simplices. In this case, the pieces are shaped like

∆n×Gn with points in Gn parameterized by g01, g12, . . . , g(n−1)n. Then one can define gij by

composing the intermediate group element; think of these as edge elements in a lattice gauge

theory with the curvature on the plaquettes forced to vanish. The gluing of the boundaries

is then to take the gij’s in the only reasonable way. There is actually a choice of sign here

as to whether gij is a group element coming from the i side and going to the j side or the

3After all, there is no i in team.

4



other way around. I will take the convention that gij goes from j to i so that I can write

things like g03 = g01g12g23 without going insane.

More explicitly, this classifying space is constructed by starting with a base point, gluing

in [0, 1]× G to give the group elements, then gluing in ∆2 × G2 to encode the composition

law, gluing in ∆3×G3 to do associativity related things, and then gluing in higher things to

do their inscrutable higher purposes. A map from M into BG corresponds to the principal

G-bundles because such a map can always be deformed to the base point on the codimension

zero patches, which then gives a group element in the codimension one boundaries since those

land in [0, 1]×G. In the codimension two triple intersections, you get the cocycle condition

gijgjk = gik as needed and everything plays nice to all the higher degrees.

The topology of the space of principal G-bundles over M is controlled by the fundamental

groups of BG and the cohomology of M . M can be built by starting with a bunch of points,

then gluing in intervals then disks then balls then et cetera. The choice in the possible maps

from a n-ball into BG with a given boundary is controlled by πn(BG), which is the group

composed of the distict possible maps from the n-ball with boundary the constant map to

the base point. When you take into account the constraints and redundancies, you get that

this stage is controlled by Hn(M,πn(BG)). Note that since G is the loop space of BG by

construction, πn(BG) = πn−1(G).

I’m taking G to be connected, so π0(G) is trivial. In general, though, G could have a

non-trivial (but necessarily finite) π1. This would mean that there are a finite number of

distinct types of G-bundles indexed by H2(M,π1(G)). For simplicity, though, I will take G

to be simply connected. The second homotopy group of G vanishes and the third homotopy

group is4 π3(G) = Z. Since for the simply-connected case the first two homotopy groups of

G and thus the first three homotopy groups of BG vanish, all G-bundles on a 3-manifold

M are deformable to the trivial one. In response to this, I’m going to stick my fingers in

my ears, shout LOCALITY LOCALITY LOCALITY, and proceed on as usual. The third

homotopy group of G, however, matters. This gives a Z’s worth of non-trivial topological

configurations of a G-bundle on a 4-manifold, which is exactly the instanton number, and

gives the space of G-bundles on a 3-manifold a non-trivial fundamental group. So the space

of bundles looks like a circle. The reason that the Chern-Simons action cannot be made

single-valued and the reason for the discretization of the level is that when you go around

this circle once, the action shifts by a constant.

The mathematicians have something of a bad habit of specifying groups but not helping

you do any calculations because they don’t give the generator. So I’m going to describe the

4These are derived through some argument involving affine Lie algebras and the loop group. Funnily

enough, that same argument gives that all homotopy groups except the third of E6, E7 and E8 vanish until

the 9th, 11th, 15th, respectively. This might have something to do with M theory.
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generator in this case. The way to analyze a Lie group is to pick a maximal commuting

subspace of the Lie algebra (this is unique up to conjugation) and then diagonalize every-

thing with respect to these mutually commuting operators. The dimension of this Cartan

subalgebra is the rank r of the group (which is why E8 is called that – it has rank 8). The

exponential of the Cartan subalgebra gives the maximal torus in the Lie group – from this

you can read off whether it’s simply connected, adjoint, or whatever. If you diagonalize the

Lie algebra itself with respect to the Cartan subalgebra, you will get a dimension r subspace

at zero and a bunch of one-dimensional subspaces. The eigenvalues of each of these subspaces

gives the root system of the Lie algebra.

In particular, the subspace associated to each root, the subspace associated to its negative,

and the subspace of the Cartan subalgebra coming from the commutator of these, gives a

copy of the SU(2) Lie algebra. Correspondingly, to each root there is a map SU(2) → G.

Since SU(2) is topologically the same as S3, this gives an element of π3(G). The generator

is then the map coming from any of the shortest roots in the root system (longer ones give

covers with degree proportional to the square of their length).

3 The True Chern-Simons Action

A bundle with connection is specified by having on patche i a connection Ai which is a one-

form valued in the adjoint representation of the gauge groupG and on the boundaries between

patches i and j a transition map gij. These are constrained so that5 d+Aj = gji(d+Ai)gij
and gijgjk = gik. To this, we want to assign a differential cohomology 3-form

L = L(0) + L(1) + L(2) + L(3) (13)

valued in R mod something discrete.

I’m going to normalize arbitrarily and set

L
(0)
0 = tr

(
1

2
A0 ∧ dA0 +

1

3
A0A0A0

)
(14)

Now, I say trace here but in a general Lie group, there is not a canonical representation for

this analagous to the fundamental representation of SU(N). In this case, though, one is only

actually using the trace of the product of two Lie algebra elements, which is unique up to

rescaling. In particular, the antisymmetry of the one-form A0 means that A0A0 =
1
2
{A0, A0}

and is in the Lie algebra itself for any representation. Therefore, the choice of representation

only really matters for the scaling of the inner product, which I’m going to leave unfixed.

5Note that I’m using the mathematician’s convention of having the connection being anti-Hermitian.
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The condition that we want to demand in order to ensure invariance under gauge trans-

formation and deformation of the boundaries between the patches is that L is closed, so

(d+ δ)L = dL(0) + (dL(1) + δL(0)) + (dL(2) + δL(1)) + (dL(3) + δL(2)) + δL(3) = 0. (15)

On patches, L(0) is already a top-form, so its exterior derivative automatically vanishes.

The first non-trivial equation is then

dL
(1)
01 = L

(0)
1 − L

(0)
0 = d

(
1

2
tr (A0 ∧ dg01g10)

)
− 1

6
tr (dg01g10dg01g10dg01g10) (16)

We’re going to need to look at that last term a bit more closely. One can check that this

is a closed 3-form on G. Pick one of the maps SU(2) → G given by the short roots. This

gives something proportional to the corresponding 3-form on SU(2). One can also check

that this 3-form is invariant under both the left and right actions and that in the vicinity of

the identity it equals

−(tr (σ2
z))dxdydz, (17)

where one parameterizes the Lie algebra as ixσx + iyσy + izσz. Therefore, if one sets

M = tr ((iσz)
2), the integral of the three-form around the three-cycle is 2π2M . For the

fundamental representation of SU(N), M = −2, which means that the action needs to be

rescaled by 2π to be valued in R/(2πZ), explaining the k
4π

in (1).

There is now the integer-integral 3-form

ω
(1)
01 = − 1

12π2M
tr

(
(dg01g10)

3) . (18)

This actually extends to a closed differential cohomology 4-form on BG with

ω = ω(1) + ω(2) (19)

and

ω
(2)
012 =

1

4π2M
tr (dg01dg12g20) . (20)

Since the π4(BG) = Z is the first non-vanishing homotopy group of BG, its first cohomology

is in degree 4 and equals Z. Thus, there is a integer-valued 4-form (this requires breaking

up G into contractible patches) ω̃ on BG which differs from ω by an exact.

Then, let α = α(1) + α(2) + α(3) and

ω − ω̃ = (d+ δ)α. (21)

Note that α is unique up to exact since the third homology group vanishes in BG as it might

well be a point as far as the first three degrees are concerned. If you interpret α as R/Z
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differential cohomology 3-form, we have (d+ δ)α = ω. In particular, we have dα
(1)
01 = −ω

(1)
01 ,

so this gives the true, local form of the Wess-Zumino term in the WZW model’s action.

We now have the next term in the Chern-Simons action:

L
(1)
01 =

1

2
tr (A0 ∧ dg01g10)− 2π2Mα

(1)
01 . (22)

The next constraint is

dL
(2)
012 = −L

(1)
12 + L

(1)
02 − L

(1)
12 = −2π2Mdα2

012 (23)

so we have L(2) = −2π2Mα
(2)
012 and L(3) = −2π2Mα(3).

Putting these pieces together, we have the full, local Chern-Simons action:

L
(0)
0 = tr

(
1

2
A0 ∧ dA0 +

1

3
A0 ∧ A0 ∧ A0

)
, (24)

L
(1)
01 =

1

2
tr (A0 ∧ dg01g10)− 2π2Mα

(1)
01 , (25)

L
(2)
012 = −2π2Mα

(2)
012, (26)

L
(3)
0123 = −2π2Mα

(3)
0123, (27)

where α is R/Z-valued differential cohomology 3-form on BG satisfying

(d+ δ)α = ω = ω(1) + ω(2), (28)

where

ω
(1)
01 = − 1

12π2M
tr

(
(dg01g10)

3) , (29)

ω
(2)
012 =

1

4π2M
tr (dg01dg12g20) . (30)
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